Solving large structured games: Action-Graph Games and generalizations

Albert Xin Jiang
Trinity University

(Based on joint work with Kevin Leyton-Brown & David Thompson)
EC workshop 2016
Why representations matter

- For now let’s focus on simultaneous move games
- So far: represent game as normal form (strategic form), then solve using Gambit
- For n-player m-action game, how many payoff values do we need to store?

- For large multiplayer games, just storing the game as normal form would be impractical
Example: Coffee Shop Game

- Each player needs to decide where to open a coffee shop
- Utility depends on location, and level of competition nearby
- A type of location game [Hotelling 1929, ...]
Structure in games

- Fortunately most games of interest in are **structured**
 - We tend to define these games using a few sentences, formulae & rules, instead of n-dimensional table
 - It is thus possible to represent the game **compactly**, using fewer # of bits than normal form
 - We want compact representations that are computation-friendly, such that game-theoretic algorithms scale with the size of the representation
- Existing literature on various compact representations
 - Either only for special classes of games, e.g. symmetric/anonymous games, congestion games [Rosenthal]
 - Or only capture a subset of commonly-seen structure, e.g. graphical games [Kearns et al 01] only exploit strict independence
Action-Graph Game (AGG)

- A compact representation for complete information, simultaneous-move games [Leyton-Brown & Bhat 04, Jiang et al 11]
 - Can represent arbitrary games
 - Exponentially smaller than normal form when games exhibit commonly-seen types of structure
 - Generalize and unify existing compact representations including graphical games, symmetric games...
 - Exponential speedup over normal form for many of Gambit’s solvers
 - Now integrated as part of Gambit
Representing Coffee Shop Game

• Each player needs to decide where to open a coffee shop
• Utility depends on location, and level of competition nearby
• Natural to model the domain as a graph over possible locations
Defining AGG

• **Action Graph**
 - Nodes are actions

• **Each agent selects an action**
 - From his action set: a subset of action nodes
 - Configuration: vector of action counts

• **Utility for selecting action** a
 - Function of the configuration of a’s neighborhood
Properties of AGG

• AGGs can represent any game
• More compact than the normal form when the game exhibits at least one of the following structure:
 • Context-specific independence
 • Anonymity
• Representation size is $O(m n^d)$, polynomial for constant-degree graphs
• In contrast, normal form $O(nm^n)$ space
Coffee shop game revisited

• What if utility depends on total # of shops
 • at the chosen location
 • within distance 1 of the chosen location
 • further away
• Action graph has in-degree $|A|$
 • NF & Graphical game: size $O(|A|^N)$
 • AGG: $O(N|A|)$
 • Still doesn’t capture game structure
 • Given action node, its payoff only depend on 3 things
AGG-FNs: Function Nodes

- Introduce Function nodes
 - The “configuration” of a function node is a given function of configuration of its neighbors
- Coffee Shop as AGG-FN: $O(N^3)$
AGG File Format (details at agg.cs.ubc.ca)

- # of players
- # of action nodes and # of function nodes
- for each player, # of actions and which action nodes they are
- the action graph, as neighbor lists
- types of function nodes
- for each action node, utility function: mapping from configuration to utility value, e.g.
 - [1 0] 2.5
 - [1 1] -1.2
• Without loss of compactness, AGGs can encode
 • Graphical games
 • Symmetric games
• Another extension: additive structure (AGG-FNA)
• Enables compact encoding of
 • Congestion Games
 • Polymatrix games
 • & others..
Equilibrium Computation for AGGs

• Want algorithms that scale with the size of the AGG

• Key subproblem: computing expected utility

\[u_i(\sigma) = \sum_{a \in A} u_i(a) \prod_{j \in N} \sigma_j(a_i) \]

• Polynomial-time algorithm
 • Exploiting locality: project to neighborhood of action
 • Exploiting anonymity: compute prob of configuration
 • Dynamic programming

• Exponentially speed up existing Nash Eq algorithms
 • Most Gambit solvers, including
 • gnm[Govindan & Wilson ‘03], simpdiv[van der Laan et al ‘87], QRE tracing [Turocy]
 • And any other algorithms that use expected utility
AGG Software & Applications

- AGG now integrated into GAMBIT (gambit-project.org)
 - Reads in AGG file format
 - Solve AGG, visualize/analyze results
- Instance generators, GUI (agg.cs.ubc.ca)
- Positronic Economist (github.com/davidrmthompson/positronic-economist)
 - Modeling language built on top of AGG

- Applications
 - ad auctions [Thompson&Leyton-Brown 2009]
 - strategic voting [Thompson et al 2013]
 - wireless spectrum allocation [Wu&Kuo, 2012]
Bayesian Games

• It's desirable to work with Bayesian games as well as with complete-information games
 • Previously no general representations or algorithms targeting Bayes-Nash equilibrium

• This leaves two general approaches, both of which make use of complete-information Nash algorithms:
 • induced normal form
 • one action for each pure strategy (mapping from type to action)
 • set of players unchanged
 • agent form
 • one player for each type of each of the BG's players
 • action space unchanged
Bayesian AGGs [Jiang&Leyton-Brown 10]

- Idea: construct an AGG-like representation of the Bayesian game's utility functions, which can then compactly encode its agent form.
 - Bayesian network for the joint type distribution
 - A (potentially separate) action graph for each type of each agent
 - Utility function on each node, as defined in AGG: function of configuration of neighboring nodes
 - Utility thus depends on which types are realized and on the actions taken by the other agents of the appropriate types

- BAGG file: similar to AGG, with additional specification of types and type distributions
BAGG results

• **Representational compactness:**
 • Representation size grows polynomially in # of players, types and actions, when action graph has constant-bounded in-degree
 • Exponential savings over an unstructured Bayesian game

• **Computational tractability:**
 • When types are independent, expected utility can be computed in time polynomial in the size of the BAGG.
 • When types are not independent, expected utility can still be computed in polynomial time when an induced Bayesian network has bounded treewidth.
 • With the speeded up EU, can solve NE of the agent form using Gambit solvers, which yields BNE of the Bayesian game
 • Integrated as part of Gambit: reads in BAGG file format, solver outputs NE of agent form
Computing BNE with GNM algorithm [Govindan & Wilson]
Example: Patrolling in a subway system

- Defender vs fare evader
- Defender commits to a (randomized) daily patrol schedule
 - Multiple units, each unit choose a sequence of (location, time)
Games with structured strategy spaces

• Each player may need to make a complex decision with multiple components
 • E.g. bid simultaneously in multiple auctions; rank a set of options; choose a path in a network; controlling a team of agents; choose a contingency plan with multiple scenarios
 • Exponential # of possible pure strategies; though the set of pure strategies admit a short description
 • Many existing representations and algorithms rely on explicitly enumerating pure strategies

• Single-agent version well studied in combinatorial optimization and AI

• Special classes of games studied: network congestion games, simultaneous auctions, security games, dueling algorithms [IKLMPT 11], Bayesian games [Harsnanyi 67]
 • Lack of general representation & computational framework
Resource Graph Games

• A generalization of AGGs to representing structured strategy spaces
 • Idea: allow each player to choose more than one node in the resource graph
 • Each pure strategy a subset, represented by 0-1 vector
 • Each player’s set of pure strategies are integer points in a polytope
 • represented using linear constraints
 • Utility functions for each node, as in AGG (function of configuration of neighbors)
 • A player’s utility is the sum of utility contributions from each node chosen by the player

• Computation
 • Need to compactly represent mixed strategies
 • Can use marginal strategies (expected point in the polytope), if utilities are multilinear
 • Key task: computing utility gradient
 • Algorithm for computing coarse correlated equilibrium
 • Many open questions on adapting existing (or designing new) algorithms

• Preliminary implementation, not yet in Gambit
Summary

• For large games, we need compact representations
 • Action-Graph Games for complete-information games
 • Bayesian AGGs for incomplete-information games
 • Now part of Gambit: can read & solve AGGs/BAGGs

• Current/future work:
 • Other algorithms
 • Eg. exploiting graph properties (treewidth; message-passing)
 • Finding all equilibria / extremal equilibria; support enumeration
 • Other solution concepts:
 • correlated equilibrium [Papadimitriou&Roughgarden08]
 • Stackelberg equilibrium
 • Representing dynamic games: MAIDs, Temporal AGG
 • Higher-level language: e.g. positronic economist [Thompson16]
 • Scaling up strategy space: RGGs, algorithms
 • Learning from data
Computing expected utility: projection
Computing expected utility: Anonymity

- After projection, still exponential, but exponentially smaller
- Write EU in terms of configurations

\[
V_{a_i}(s_{-i}) = \sum_{c^{(a_i)} \in \mathcal{C}(a_i)} u^{a_i}(c(a_i, c^{(a_i)})) \Pr(c^{(a_i)} | s^{(a_i)}_{-i})
\]

\[
\Pr(c^{(a_i)} | s^{(a_i)}_{-i}) = \sum_{a^{(a_i)}_{-i} \in S(c^{(a_i)})} \Pr(a^{(a_i)}_{-i} | s^{(a_i)}_{-i})
\]

\(s^{(a)} \equiv \) projection with respect to action \(a\)

\(c(a_i, c_{-i}) \equiv \) configuration caused by \(a_i, c_{-i}\)

\(S(c) \equiv \) set of pure action profiles giving rise to \(c\)
Dynamic programming for $\Pr \left(c_i^{(a_i)} | s_{-i}^{(a_i)} \right)$

- Base case: zero agents and its resulting configuration
 - $c_0 = (0, \ldots, 0)$
 - $P_0(c_0) = 1$
- Then add agents one by one

$$P_k(c_k) = \sum_{(c_{k-1}, a_k), \text{ such that } C(c_{k-1}, a_k) = c_k} s_k(a_k) \cdot P_{k-1}(c_{k-1})$$
Other algorithms

• Treewidth-based dynamic programming algorithms for
 • Pure strategy NE [Jiang & Leyton-Brown, 2007]
 • Approximate mixed strategy NE [Daskalakis et al, 2009]

• Support enumeration method for computing Nash in AGGs [Thompson et al 2009]